Мощный преобразователь напряжения для автомобильного усилителя. Мощный преобразователь напряжения для автомобильного усилителя Трансформатор для подключения автомобильного усилителя

Рис. 1 моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания

Преобразователь напряжения в схеме блоков питания автомобильных усилителей , как и любой источник питания, имеет некоторое выходное сопротивление. При питании от общего источника между каналами многоканальных усилителей звука возникает взаимосвязь, которая тем больше, чем выше выходное сопротивление источника питания. Оно, обратно пропорционально мощности преобразователя.

Одной из составляющих выходного сопротивления блока питания становится и сопротивление питающих проводов. В моделях высокого класса для питания выходных каскадов усилителя мощности звука используют медные шины сечением 3...5 мм. Это наиболее простое решение проблем с питанием усилителя звука, улучшающее динамику и качество звучания.

Конечно, повысив мощность источника питания, взаимное влияние каналов можно уменьшить, но полностью исключить его нельзя. Если же использовать для каждого канала отдельный преобразователь, проблема снимается. Требования к отдельным источникам питания при этом можно заметно снизить. Обычно уровень переходного затухания автомобильных усилителей с общим блоком питания составляет для бюджетных моделей 40...55 дБ, для более дорогих - 50...65 дБ. Для автомобильных усилителей звука с раздельными блоками питания этот показатель превышает 70 дБ.

Преобразователи напряжения питания делятся на две группы - стабилизированные и нестабилизированные . Нестабилизированные заметно проще и дешевле, но им свойственны серьезные недостатки. На пиках мощности выходное напряжение преобразователя снижается, что приводит к увеличению искажений. Если увеличить мощность преобразователя, это снизит экономичность при малой выходной мощности. Поэтому нестабилизированные преобразователи применяются, как правило, в недорогих усилителях с суммарной мощностью каналов не более 100... 120 Вт. При более высокой выходной мощности усилителя предпочтение отдается стабилизированным преобразователям.

Как правило, блок питания смонтирован в одном корпусе с усилителем (на рис. 1 показана моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания), но в некоторых конструкциях он может быть выполнен в виде внешнего блока или отдельного модуля. Для включения автомобильного усилителя в рабочий режима усилителя используется управляющее напряжение от головного аппарата (вывод Remote). Потребляемый по этому выводу ток минимален - несколько миллиампер - и никак не связан с мощностью усилителя. В автомобильных усилителях обязательно используется защита от короткого замыкания нагрузки и от перегрева. В ряде случаев имеется также защита акустичеких систем от постоянного напряжения в случае выхода из строя выходного каскада усилителя. Эта часть схемы для современных автомобильных усилителей стала практически типовой и может отличаться незначительными изменениями.

Рис. 2 Схема стабилизированного блока питания автомобильного усилителя звука "Monacor НРВ 150"

В первых автомобильных усилителях в блоках питания использовались преобразователи напряжения, выполненные полностью на дискретных элементах. Пример такой схемы стабилизированного блока питания автомобильного усилителя звука "Monacor НРВ 150" (рис. 2). На схеме сохранена заводская нумерация элементов.

Задающий генератор выполнен на транзисторах VT106 и VT107 по схеме симметричного мультивибратора. Работой задающего генератора управляет ключ на транзисторе VT101. Транзисторы VT103, VT105 и VT102, VT104 - двухтактные буферные каскады, улучшающие форму импульсов задающего генератора. Выходной каскад выполнен на параллельно включенных биполярных транзисторах VT111, VT113 и VT110, VT112. Согласующие эмиттерные повторители на VT108 и VT109 питаются пониженным напряжением, снимаемым с части первичной обмотки трансформатора. Диоды VD106 - VD111 ограничивают степень насыщения выходных транзисторов. Для дополнительного ускорения закрывания этих транзисторов введены диоды VD104, VD105. Диоды VD102, VD103 обеспечивают плавный запуск преобразователя. С отдельной обмотки трансформатора напряжение, пропорциональное выходному, подается на выпрямитель (диод VD113, конденсатор С106). Это напряжение обеспечивает быстрое закрывание выходных транзисторов и способствует стабилизации выходного напряжения.

Недостаток биполярных транзисторов - высокое напряжение насыщения при большом токе. При токе 10... 15 А это напряжение достигает 1 В, что значительно снижает КПД преобразователя и его надежность. Частоту преобразования не удается сделать выше 25...30 кГц, в результате растут габариты трансформатора преобразователя и потери в нем.

Применение полевых транзисторов в блоке питания повышает надежность и экономичность. Частота преобразования во многих блоках превышает 100 кГц. Появление специализированных микросхем, содержащих на одном кристалле задающий генератор и цепи управления, значительно упростило конструкцию блоков питания для мощных автомобильных усилителей.

Рис. 3 Упрощенная схема нестабилизированного преобразователя напряжения питания автомобильного усилителя "Jensen"

Упрощенная схема нестабилизированного преобразователя напряжения питания четырехканального автомобильного усилителя "Jensen" приведена на рис. 3 (нумерация элементов на схеме условная).

Задающий генератор преобразователя напряжения собран на микросхеме KIA494P или TL494 (отечественный аналог - КР1114ЕУ4). Цепи защиты на схеме не показаны. В выходном каскаде, помимо указанных на схеме типов приборов, можно использовать мощные полевые транзисторы IRF150, IRFP044 и IRFP054 или отечественные КП812В, КП850. В конструкции использованы отдельные диодные сборки с общим анодом и с общим катодом, смонтированные через изолирующие теплопроводящие прокладки на общем теплоотводе вместе с выходными транзисторами усилителя.

Трансформатор можно намотать на ферритовом кольце типоразмера К42х28х10 или К42х25х11 с магнитной проницаемостью μ э =2000. Первичная обмотка намотана жгутом из восьми проводов диаметром 1,2 мм, вторичная - жгутом из четырех проводов диаметром 1 мм. После намотки каждый из жгутов разделен на две равные части, и начало одной половины обмотки соединено с концом другой. Первичная обмотка содержит 2x7 витков, вторичная - 2x15 витков, равномерно распределенных по кольцу.

Дроссель L1 намотан на ферритовом стержне диаметром 16 мм и содержит 10 витков эмалированного провода диаметром 2 мм. Дроссели L2, L3 намотаны на ферритовых стержнях диаметром 10 мм и содержат по 10 витков провода диаметром 1 мм. Длина каждого стержня 20 мм.

Подобная схема блоков питания с незначительными изменениями используется в автомобильных усилителях с суммарной выходной мощностью до 100... 120 Вт. Варьируются число пар выходных транзисторов, параметры трансформатора и устройство цепей защиты. В преобразователях напряжения более мощных усилителей вводят обратную связь по выходному напряжению, увеличивают число выходных транзисторов.

Для равномерного распределения нагрузки и уменьшения влияния разброса параметров транзисторов в трансформаторе токи мощных транзисторов распределяют на несколько первичных обмоток. Например, в преобразователе блока питания автомобильного усилителя "Lanzar 5.200" использовано 20! мощных полевых транзисторов, по 10 в каждом плече. Повышающий трансформатор содержит 5 первичных обмоток. К каждой из них подключено по 4 транзистора (параллельно по два в плече). Для лучшей фильтрации высокочастотных помех возле транзисторов установлены индивидуальные конденсаторы сглаживающего фильтра суммарной емкостью 22000 мкФ. Выводы обмоток трансформатора подключены непосредственно к транзисторам, без использования печатных проводников.

Поскольку автомобильным усилителям звука приходится работать в очень тяжелом температурном режиме, для обеспечения надежной работы в некоторых конструкциях используются встроенные вентиляторы охлаждения, продувающие воздух через каналы теплоотвода. Управление вентиляторами осуществляется с помощью термодатчика. Встречаются устройства как с дискретным управлением ("включен-выключен"), так и с плавной регулировкой скорости вращения вентилятора.

Наряду с этим, во всех усилителях используется термозащита блоков. Чаще всего она реализуется на основе термистора и компаратора. Иногда применяют стандартные компараторы в интегральном исполнении, но в этой роли чаще всего используют обычные микросхемы операционных усилителей ОУ. Пример схемы устройства термозащиты используемой в уже рассмотренном четырехканальном автомобильном усилителе "Jensen" приведен на рис. 4. На схеме, нумерация деталей условная.

Термистор R t 1 имеет тепловой контакт с корпусом усилителя вблизи выходных транзисторов. Напряжение с термистора подано на инвертирующий вход ОУ. Резисторы R1 - R3 вместе с термистором образуют мост, конденсатор С1 предотвращает ложные срабатывания защиты. При длине проводов, которыми термистор подключен к плате, около 20 см уровень наводок от блока питания достаточно велик. Через резистор R4 осуществляется положительная обратная связь с выхода ОУ, превращающая ОУ в пороговый элемент с гистерезисом. При нагреве корпуса до 100 °С сопротивление термистора снижается до 25 кОм, компаратор срабатывает и высоким уровнем напряжения на выходе блокирует работу преобразователя.

Выходные транзисторы усилителя и ключевые транзисторы преобразователя питания чаще всего применяют в пластиковых корпусах, ТО-220. К теплоотводу их крепят либо винтами, либо пружинными клипсами. У транзисторов в металлических корпусах теплоотвод несколько лучше, но поскольку устанавливать их нужно через специальные теплоотводящие прокладки, монтаж их намного сложнее, поэтому используют их в автоусилителях значительно редко, только в самых дорогих моделях.

Несмотря на всё многообразие автомобильных усилителей их схемотехника схожа. Давайте узнаем, как устроен рядовой усилитель для авто.

Начнём с блока питания или инвертора. Дело в том, что сам усилитель питается от бортового аккумулятора 12V. А усилительная часть требует двухполярного напряжения ±25 вольт, а иногда и больше.

На печатной плате усилителя обнаружить преобразователь не сложно, его выдаёт тороидальный трансформатор и куча электролитов.

А это уже усилитель Lanzar VIBE. Преобразователь занимает половину печатной платы.

В большинстве случаев преобразователь строится на базе микросхемы ШИ-контроллера TL494CN , которую легко обнаружить в блоках питания AT от ПК .

В мои руки попали несколько автоусилителей китайской сборки (CALCELL, Lanzar VIBE, Supra, Fusion). Во всех этих усилителях применялась схема преобразователя весьма похожая на ту, что опубликована в журнале "Радио" ("Трёхканальный УМЗЧ для автомобиля", автор В. Горев, №8 от 2005 года, стр. 19-21). Вот данная схема.

Отличие данной схемы от тех, что применяются в промышленных образцах автоусилителей - это другая элементная база, а также применение одного вторичного выпрямителя (здесь их два). В серийных образцах также отсутствуют компенсационные дроссели (2L2 - 2L3 , 2L4 - 2L5 ) и, соответственно, электролиты 2С9, 2С10, 2С13, 2С14. От всей этой цепи остаются только ёмкие электролитические конденсаторы на 3300 - 4700 мкФ (35 - 50V) на выходе преобразователя (2С11 , 2С12 ). На входе преобразователя для фильтрации помех от бортовой сети устанавливается П-образный фильтр (LC-фильтр + ёмкостной фильтр). Он состоит из дросселя на ферритовом кольце (2L1 ) и двух электролитических конденсаторов (на схеме - 2С8 , 2С21 ). Иногда, чтобы увеличить общую ёмкость конденсаторов, ставят несколько конденсаторов и соединяют их параллельно. Конденсаторы выбираются на рабочее напряжение 25V (реже 35V) и ёмкостью от 2200 мкФ.

Кроме этого в промышленных схемах цепи перевода из дежурного режима в рабочий выполнены на базе маломощных транзисторов. В приведённой же схеме для включения усилителя используется обычное электромагнитное реле на 12V.

В усилителях CALCELL, Lanzar VIBE, Supra в цепях обвязки микросхемы TL494CN установлена цепь из нескольких биполярных транзисторов. При подаче +12 на клемму REM (Remote - "управление") происходит запуск преобразователя - усилитель включается.

Схема инвертора - двухтактный преобразователь. В качестве ключевых транзисторов используются полевые N-канальные MOSFET транзисторы (например, IRFZ44N - аналог STP55NF06, STP75NF75) Также могут применяться и более мощные аналоги IRFZ46 - IRFZ48. Чтобы увеличить мощность преобразователя в каждом плече устанавливается по 2, а иногда и по 3 MOSFET-транзистора, а стоки их соединяются.

Благодаря этому через транзисторы можно прокачать значительный импульсный ток. Нагрузкой стоков полевых транзисторов являются 2 обмотки импульсного трансформатора. Он тороидальный, то есть в виде кольца с обмотками провода довольно большого сечения.

Так как с импульсного тороидального трансформатора напряжение снимается импульсное, то его нужно выпрямить. Для этих целей служат два сдвоенных диода. Один имеет общий катод (MURF1020CT , FMQ22S ), а другой общий анод (MURF1020N , FMQ22R ). Диоды эти непростые, а быстрые (Fast), рассчитанные на прямой ток от 10 ампер.

В результате на выходе получаем двухполярное напряжение ±25 - 27V, которое требуется для "раскачки" мощных выходных транзисторов усилителя мощности звуковой частоты (УМЗЧ).

О важных мелочах. Чтобы отремонтировать автоусилитель в домашних условиях, необходим блок питания на 12V и ток несколько ампер. Я использую либо компьютерный блок питания или блок 12V(8А) , который приобрёл для светодиодной ленты. О том, как подключить автомобильный усилитель дома читайте .

Продолжение следует...

Ценители качественного и громкого звука в салоне автомобиля непременно столкнутся с необходимостью установки автомобильного усилителя. Каждый автолюбитель знает, что мощность электрической сети автомобиля равняется 12 Вольт, чего критически мало для того, чтобы при сопротивлении в 4 Ом выдавать действительно мощный звук, ведь некоторые массивные динамики рассчитаны на питание в несколько тысяч Ватт. В таких случаях в автомобиль дополнительно устанавливают усилитель мощности для того, чтобы преобразовать напряжение. При желании усилитель мощности может быть изготовлен своими руками, его схема достаточно проста. Единственная сложность может — это изготовить блок питания для автомобильного усилителя.

Строение блока питания

Блок питание — самая сложная деталь в усилителе, которая состоит из:

  • генератора импульсов;
  • полевых транзисторов IRFZ44N;
  • диода VD1,
  • ферритового кольца диаметром минимум в 2 сантиметра;
  • дросселя L1;

Чаще именно из-за трудоемкости сборки блока многие любители качественного звука отказываются от самостоятельной сборки автомобильного усилителя. На самом деле, все не так сложно как может показаться изначально. Достаточно обладать минимальными знаниями или следовать инструкции.

Сердцем преобразователя условно называют электрогенератор импульсов. Самая простая формула его создания лежит на основе схемы TL494. Частота генерации может быть увеличена или уменьшена при помощи изменения номинальной мощности резистора R3.

Мышцы блока питания для усилителя представляют собой сдельные транзисторы типа IRFZ44N. В схеме можно использовать резисторы любого типа (за исключением R4, R9, R10). В блок питания можно включить резисторы любой номинальной мощности, в том числе и 0,125 Вт, 0,25 Ватт и включая 1 Вт и даже 0,5 Вт. Светодиод VD1 монтируется в схему с целью предотвращения вторичного подключения плюсовых каналов.

Изготовление блока питания для усилителя

Гидродроссель L1 нужно накрутить на ферритовое кольцо диаметром 2 см. Его можно заимствовать с компьютерного блока питания или просто купить. Для ферритового кольца диаметром 2 см необходимо сделать 12 витков удвоенной проволокой срезом равным 0,7 миллиметрам, которые следует равномерно распределить по всему периметру кольца. Данный гидродроссель подходит и для наматывания на ферритовый стержень диаметром 8-10 миллиметров и длиной в 2 3 сантиметра. Однозначно, наиболее сложный момент в изготовлении конвертера напряжения - правильная формовка трансформатора, так как именно от трансформатора зависит работоспособность всего блока питания. Оптимальным решением будет изготовить его при помощи ферритового кольца марки 2000NM объемом в 40* 25 * 11.

Пожалуй, самая трудная часть конструкции усилителей для питания канала сабвуфера от бортовой сети 12 вольт. О нем немало отзывов в разных форумах, но таки сделать реально хороший преобразователь по советам знатоков очень трудно, в этом убедитесь сами, когда дело дойдет этой части конструкции. Для этого я решил остановится на сборке преобразователя напряжения, пожалуй это будет самым подробным описанием, поскольку в ней изложен двухнедельный труд, как говорят в народе - от <<А>> до <<Я>>.
Схем преобразователей напряжения море, но как право после сборки появляются дефекты, неполадки в работе, непонятные перегревы отдельных деталей и частей схемы. Сборка преобразователя у меня затянулась на две недели, поскольку в основную схему были внесены ряд изменений, в итоге я смело могу заявить, что получился мощный и надежный преобразователь.
Основной задачей была построить преобразователь на 300-350 ватт для питания усилителя по схеме Ланзара, все получилось красиво и аккуратно, все кроме платы, химия для травления плат у нас большой дефицит, поэтому пришлось использовать макетную плату, но не советую повторять мои мучения, паять проводку для каждой дорожки, лудить каждую дырочку и контакт - работа не из простых, об этом можно судить посмотрев на плату с обратной стороны. Для красивого внешнего вида на плату был приклеен широкий зеленый скотч.

ИМПУЛЬСНЫЙ ТРАНСФОРМАТОР

Основная перемена в схеме - импульсный трансформатор. Почти во всех статьях самодельных сабвуферных установок трансформатор делают на ферритовых кольцах, но кольца иногда не доступны (как в моем случае). Единственное, что было - альсиферовое кольцо от высокочастотного дросселя, но рабочая частота этого кольца не позволяла использовать его в качестве трансформатора в преобразователе напряжения.

Тут мне повезло, почти даром получил пару компьютерных блоков питания, к счастью в обеих блоках были полностью идентичные трансформаторы.

В итоге было решено использовать два трансформатора в качестве одного, хотя один такой трансформатор может обеспечить желаемую мощность, но при намотке обмотки просто на просто не влезли бы, поэтому было решено переделывать оба трансформатора.

В начале, нужно снять сердечек, на самом деле работа достаточно простая. Зажигалкой греем ферритовую палку, которая замыкает основной сердечек и после 30 секунд жаркого клей плавится и ферритовая палка выпадает. От перегрева свойства палки могут изменится, но это не так уж и важно, поскольку палки в основном трансформаторе мы использовать не будем.

Так делаем и со вторым трансформатором, затем снимаем все штатные обмотки, очищаем выводы трансформаторов и спиливаем одну из боковых стенок обеих трансформаторов, желательно спилить свободную от контактов стенку.

Следующей частью работ, является приклеивание каркасов. Место крепление (шов) можно просто обмотать изолентой или скотчем, использовать разнообразные клеи не советую, поскольку это может помешать вставке сердечника.

Опыт в сборке преобразователей напряжения был, но тем не менее этот преобразователь выжил с меня все соки и деньги, поскольку в ходе работ было угроблено 8 полевиков и во всем был виноват трансформатор.
Опыты с количеством витков, технологии намотки и сечению проводов привели к радующим результатам.
Итак самое трудное - намотка. На многих форумах советуют мотать толстую первичку, но опыт показал, что для получения указанной мощности много не надо. Первичная обмотка состоит из двух полностью идентичных обмоток, каждая из них намотана 5-ю жилами провода 0,8мм, растянута по всей длине каркаса, но торопиться не будем. Для начала берем провод с диаметром 0,8мм, провод желательно новый и ровный, без изгибов (хотя я использовал провод от сетевой обмотки тех же самых трансформаторов от блоков питания).

Далее по одному проводу мотаем 5 витков по всей длине каркаса трансформатора (можно также мотать жгутом все жилы вместе). После намотки первой жилы, ее нужно укрепить, просто накручиванием на боковые выводы трансформатора. После уже мотаем остальные жилы, ровно и аккуратно. После окончания намотки, нужно избавится от лакового покрытия на концах обмотки, это можно сделать несколькими способами - греть провода мощным паяльником или сдирать лак по отдельности с каждого провода монтажным ножом или бритвой. После этого нужно залудить кончики проводов, сплетаем их в косичку (удобно использовать плоскогубцы) и покрываем толстым слоем олова.
После этого переходим ко второй половине первичной обмотки. Она полностью идентична с первой, перед ее намоткой первую часть обмотки покрываем изолентой. Вторая половина первичной обмотки тоже растянута по всему каркасу и намотана в том же направлении, что и первая, мотаем по тому же принципу, по одной жиле.

После окончания намотки нужно сфазировать обмотки. У нас должна получится одна обмотка, которая состоит из 10 витков и имеет отвод от середины. Тут важно помнить одну важную деталь - конец первой половины должен присоединится с началом второй половинки или наоборот, чтобы не возникли затруднения при фазировке, лучше все делать по фотографиям.
После усердной работы первичная обмотка наконец готова! (можно попить пивка).
Вторичная обмотка - тоже требует большого внимания, поскольку именно она будет питать усилитель мощность. Намотана по тому же принципу, что и первичная, только каждая половинка состоит из 12 витков, что вполне обеспечивает на выходе двухполярное напряжение 50-55 вольт.

Обмотка состоит из двух половинок, каждая намотана 3-я жилами провода 0,8 мм, провода растянуты по всему каркасу. После намотки первой половинки обмотку изолируем и поверх мотаем вторую половину в том же направлении, что и первую. В итоге у нас получаются две одинаковые половинки, которые фазируются таким же образом, как первичка. После выводы очищают, сплетают и запаивают друг к другу.

Один важный момент - если решили использовать другие разновидности трансформаторов, то следите, чтобы у половинок сердечка не было зазора, в следствии опытов, было обнаружено, что даже малейший зазор в 0,1мм резко нарушает работу схемы, ток потребления возрастает раза в 3-4, полевые транзисторы начинают перегреваться так, что кулер не успевает охладить их.

Готовый трансформатор можно экранировать медной фольгой, но особо большой роли это не играет.

В итоге получается компактный трансформатор, который с легкостью способен отдавать нужную мощность.

Схема устройства не из простых, начинающим радиолюбителям не советую связаться с ним. Основа как всегда генератор импульсов, построенный на интегральной микросхеме TL494. Дополнительный усилитель на выходе построен на паре маломощных транзисторов серии ВС 557, почти полный аналог ВС556, из отечественного интерьера можно применить КТ3107. В качестве силовых ключей применены две пары мощных полевых транзисторов серии IRF3205, по 2 полевика на плечо.

Транзисторы установлены на небольшие теплоотводы от компьютерных блоков питания, заранее изолированы от теплоотвода специальной прокладкой.
Резистор 51 ом - единственная деталь схемы, которая перегревается, поэтому резистор нужен на 2 ватта (хотя у меня всего 1ватт), но перегрев не страшный, это никак не влияет на работу схемы.
Монтаж, особенно на макетной плате очень занудный процесс, поэтому лучше все делать на печатной плате. Плюсовые и минусовые дорожки делаем пошире, затем покрываем толстым слоям олова, поскольку по ним будет протекать немалый ток, тоже самое и со стоками полевиков.
Резисторы на 22 ома ставим на 0,5-1ватт, они предназначены для снятия перегруза с микросхемы.

Ограничительные резисторы тока затвора полевиков и ограничительный резистор тока питания микросхемы (10ом) желательно на пол ватта, все остальные резисторы можно на 0,125ватт.

Частоту преобразователя задают при помощи конденсатора 1,2nf и резистором 15к, уменьшением емкости конденсатора и увеличением сопротивления резистора можно поднять частоту или наоборот, но с частотой желательно не играть, поскольку может нарушится работа всей схемы.
Выпрямительные диоды использованы серии КД213А, они лучше всех справлялись, поскольку из за рабочей частоты (100 кГц) чувствовали себя отлично, хотя можно использовать любые быстродействующие диоды с током не менее 10 ампер, также возможно использовать диодные сборки шоттки, которые можно найти в тех же компьютерных блоках питания, в одном корпусе 2 диода, которые имеют общий катод, таким образом для диодного моста вам понадобится 3 таких диодных сборок. Еще один диод установлен на питание схемы, этот диод служит защитой от переплюсовки питания.

Конденсаторы, к сожалению, у меня с напряжением 35 вольт 3300 мкф, но напряжение лучше подобрать от 50 до 63 вольт. На плечо стоят два таких конденсатора.
В схеме использовано 3 дросселя, первый для питания схемы преобразователя. Этот дроссель можно намотать на стандартных желтых кольцах от блоков питания. Равномерно по всему кольцу мотаем 10 витков, провод в два жила по 1 мм.


Дроссели для фильтрации вч помех уже после трансформатора, содержат тоже 10 витков, провод с диаметром 1-1,5мм, намотаны на тех же кольцах или на ферритовых стержнях любой марки (диаметр стержней не критичен, длина 2-4см).
Питание преобразователя подается при замыкании провода Remote Control (RЕМ) на плюс питания, этим замыкается реле и преобразователь начинает работать. У меня использовались два реле, соединенных параллельно на 25 ампер каждая.

Кулеры припаяны на блок преобразователя и включаются сразу после включения провода RЕМ, один из них предназначен для охлаждения преобразователя, другой для усилителя, можно также один из кулеров установить в обратном направлении, чтобы последний выводил из общего корпуса теплый воздух.

ИТОГИ И ЗАТРАТЫ

Ну, что тут говорить, преобразователь оправдал все надежды и затраты, работает как часы. В следствии опытов, он смог отдавать честные 500 ватт и смог бы больше, еслиб не умер диодный мост блока, которым питал преобразователь.
В общей сложности на преобразователь было потрачено (цены указаны для общего числа деталей, а не для одного)

IRF3205 4шт - 5$
TL494 1шт -0,5$
ВС557 3шт - 1$
КД213А 4шт - 4$
Конденсаторы 35в 3300мкф 4шт - 3$
Резистор 51ом 1шт - 0,1$
Резистор 22ом 2шт -0,15$
Макетная плата - 1$


Из этого списка диоды и конденсаторы достались даром, думаю кроме полевиков и микросхемы все можно найти на чердаке, попросить у друзей или в мастерских, таким образом цена на преобразователь не превосходит 10$. Купить готовый китайский усилитель для саба со всеми удобствами можно за за 80-100$, а товары известных фирм стоят немало, от 300 до 1000$, взамен можно собрать усилитель идентичного качества всего за 50-60 $ даже меньше, если знаешь откуда брать детали, надеюсь смог ответить на многие вопросы.

В настоящее время на рынке автомобильной аппаратуры представлен огромный ряд магнитол разной ценовой категории.Современные автомагнитолы обычно имеют 4 линейных выхода (в некоторых ещё есть отдельный выход на сабвуфер). Они предназначены для использования «головы» с внешними усилителями мощности.

Многие радиолюбители изготавливают усилители мощности своими руками. Самая сложная часть в автомобильном усилителе - это преобразователь напряжения (ПН). В данной статье мы рассмотрим принцип построения стабилизированных ПНов на основе ставшей уже «народной» микросхемы TL494 (наш аналог КР1114ЕУ4).

Узел управления

Здесь мы очень подробно рассмотрим работу TL494 в режиме стабилизации.

Генератор пилообразного напряжения G1 служит задающим. Его частота зависит от внешних элементов C3R8 и определяется по формуле: F=1/(C3R8), где F-частота в Гц; C3- в Фарадах; R8- в Омах. При работе в двухтактном режиме (наш ПН как раз и будет работать в таком режиме) частота автогенератора микросхемы должна быть в двое выше частоты на выходе ПНа. Для указанных на схеме номиналах времязадающей цепи частота генератора F=1/(0,000000001*15000)=66,6кГц. Частота импульсов на выходе, грубо говоря, 33 кГц. Генерируемое напряжение поступает на 2 компаратора (А3 и А4), выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ – НЕ D5 и D6 подают на выходные транзисторы микросхемы (VT1и VT2). Импульсы с выхода элемента D1 поступают также на счетный вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана логическая «1» (как в нашем случае – на вывод 13 подан + с вывода 14), то импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором. Если микросхему применяют в однотактном Пне, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.

Элемент А1- это усилитель сигнала ошибки в контуре стабилизации выходного напряжения ПНа. Это напряжение поступает на вывод 1 узла А1. На втором выводе- образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R2R3. Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Цепь R4C1 необходима для устойчивости стабилизатора.

Транзисторный оптрон U1 обеспечивает гальваническую развязку в цепи отрицательной обратной связи по напряжению. Он относится к цепи стабилизации выходного напряжения. Так- же за стабилизацию отвечает стабилизатор параллельного типа DD1 (TL431 или наш аналог КР142ЕН19А).

Падение напряжения на резисторе R13 приблизительно равно 2,5 вольт. Сопротивление этого резистора рассчитывают, задавшись током через резистивный делитель R12R13. Сопротивление резистора R12 вычисляют по формуле: R12=(Uвых-2,5)/I" где Uвых- выходное напряжение ПНа; I"- ток через резистивный делитель R12R13.
Нагрузкой DD1 являются параллельно соединённые балластный резистор R11 и излучающий диод (выв. 1,2 оптрона U1) с токоограничивающим резистором R10. Балластный резистор создаёт минимальную нагрузку, необходимую для нормального функционирования микросхемы.

ВАЖНО. Нужно учитывать то, что рабочее напряжение TL431 не должно превышать 36 вольт (см. даташит на TL431). Если планируется изготавливать ПН с Uвых.>35 вольт, то схему стабилизации нужно будет не много изменить, о чём будет сказано ниже.

Предположим, что ПН рассчитан на выходное напряжение +-35 Вольт. При достижении этого напряжения (на выв. 1 DD1 напряжение достигнет порогового 2,5 Вольт) , «откроется» стабилизатор DD1, загорится светодиод оптрона U1, что приведет к открыванию его транзисторного перехода. На выводе 1 микросхемы TL494 появится уровень «1». Подача выходных импульсов прекратится, выходное напряжение начнет падать до тех пор, пока напряжение на выводе 1 TL431 не станет ниже пороговых 2,5 Вольт. Как только это произойдет, DD1 «закроется», светодиод оптрона U1 погаснет, на выводе 1 TL494 появится низкий уровень и узел А1 разрешит подачу выходных импульсов. Напряжение на выходе вновь достигнет +35 Вольт. Опять «откроется» DD1, загорится светодиод оптрона U1 и так далее. Это называется «скважностью»- когда частота импульсов неизменна, а регулировка осуществляется паузами между импульсами.

Второй усилитель сигнала ошибки (А2) в данном случае использован как вход аварийной защиты. Это может быть узел контроля максимальной температуры теплоотвода выходных транзисторов, блок защиты УМЗЧ от токовой перегрузки и так далее. Как и в А1 через резистивный делитель R6R7 образцовое напряжение подается на вывод 15. На выводе 16 будет уровень «0», так как он соединен с общим проводом через резистор R9. Если подать на вывод 16 уровень «1», то узел А2 мгновенно запретит подачу выходных импульсов. ПН «остановится» и запустится только тогда, когда на 16 выводе вновь появится уровень «0».

Функция компаратора А3 – гарантировать наличие паузы между импульсами на выходе элемента D1., даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания А3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GI1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение ПНа падает.

Этим свойством пользуются для плавного пуска ПНа. Дело в том, что в начальный момент работы ПНа конденсаторы фильтров его выпрямителя полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск ПНа сразу же на полную мощность приведет к огромной перегрузке транзисторов мощного каскада и возможному выходу их из строя. Цепь C2R5 обеспечивает плавный, без перегрузок, пуск ПНа.

В первый после включения момент С2 разряжен., а напряжение на выводе 4 TL494 близко к +5 Вольт, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С2 через резистор R5 напряжение на выводе 4 уменьшается, а с ним и длительность паузы. Одновременно растет выходное напряжение ПНа. Так продолжается, пока оно не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь, о принципе работы которой было рассказано выше. Дальнейшая зарядка конденсатора С2 на процессы в Пне не влияет.

Как здесь уже было сказано,рабочее напряжение TL431 не должно превышать 36 вольт. А как быть, если от ПНа требуется получить, на пример, 50 Вольт? Сделать это просто. Достаточно в разрыв контролируемого плюсового провода поставить стабилитрон на 15…20 Вольт (показан красным цветом). В результате этого он «отсечёт» лишнее напряжение (если 15-ти вольтовый стабилитрон, то он срежет 15 Вольт, если двадцативольтовый- то соответственно уберет 20 Вольт) и TL431 будет работать в допустимом режиме напряжения.

На основании вышеизложенного был построен ПН, схема которого изображена на рисунке ниже.

На VT1-VT4R18-R21 собран промежуточный каскад. Задача этого узла- усиление импульсов перед их подачей на мощные полевые транзисторы VT5-VT8.
Блок управления REM выполнен на VT11VT12R28R33-R36VD2C24. При подаче на «REM IN» управляющего сигнала с магнитолы +12 Вольт, открывается транзистор VT12 , который в свою очередь откроет VT11. На диоде VD2 появляется напряжение, которое будет питать микросхему TL494. Пн запускается. Если магнитолу выключить, то эти транзисторы закроются, преобразователь напряжения «остановится».

На элементах VT9VT10R29-R32R39VD5C22C23 выполнен узел аварийной защиты. При подаче на вход «PROTECT IN» отрицательного импульса, ПН отключится. Запустить его можно будет только повторным отключением и включением REM. Если данный узел не планируется использовать, то элементы,относящиеся к нему, нужно будет исключить из схемы, а вывод 16 микросхемы TL494 соединить с общим проводом.
В нашем случае ПН двухполярный. Стабилизация в нем осуществляется по плюсовому выходному напряжению. Чтобы не было разницы выходных напряжений, применяют так называемый «ДГС»- дроссель групповой стабилизации (L3). Обе его обмотки наматываются одновременно на один общий магнитопровод. Получится дроссель- трансформатор. Подключение его обмоток имеют определенное правило - они должны быть включены встречно. На схеме начала этих обмоток показаны точками. В результате этого дросселя выходные напряжения обоих плеч уравниваются.

Перед включением необходимо проверить качество монтажа. Для налаживания ПНа необходим трансформаторный блок питания мощностью около 20 Ампер и с пределом регулирования выходного напряжения 10…16 Вольт. Не рекомендуется питать ПН от компьютерного блока питания.

Перед включением нужно установить выходное напряжение блока питания 12 Вольт. Параллельно выходу ПНа подключить резисторы на 2 ВТ 3,3кОм как на плюсовое плечо, так и на минусовое. Резистор ПНа R3 отпаять. Подать напряжение питания с БП на ПН (12 Вольт). Пн не должен запуститься. Далее следует подать плюс на вход REM (поставить временную перемычку на клемме + и REM). Если детали исправны и монтаж выполнен правильно, то ПН должен запуститься. Далее нужно замерить ток потребления (амперметр в разрыв плюсового провода). Ток должен быть в пределах 300…400 мА. Если он очень сильно отличается в большую сторону, то это указывает на не корректную работу схемы. Причин много, одна из основных- не правильно намотан трансформатор. Если же все в допустимых пределах, то нужно замерить выходное напряжение как по плюсу, так и по минусу. Они должны быть практически одинаковыми. Полученный результат запоминаем или записываем. Далее на место R3 нужно подпаять последовательную цепочку из постоянного резистора 27 кОм и подстроечного (можно переменного) на10 кОм, не забыв сперва отключить питание от ПНа. Вновь запускаем ПН. После запуска увеличиваем напряжение на блоке питания до 14,4 Вольт. Производим замер выходного напряжения ПНа так же, как и при первоначальном включении. Вращая ось подстроечного резистора нужно установить такое выходное напряжение, какое было при питании ПНа от 12 Вольт. Отключив БП, выпаять последовательную резисторную цепь и замерить общее сопротивление. На место R3 впаять постоянный резистор такого же номинала. Производим контрольную проверку.

Второй вариант построения стабилизации

На рисунке ниже приведен еще один вариант построения стабилизации. В этой схеме в качестве опорного напряжения для вывода 1 TL494 использован не ее внутренний стабилизатор, а внешний, выполненный на стабилизаторе параллельного типа TL431. Микросхема DD1 стабилизирует напряжение 8 вольт для питания делителя, состоящего из фототранзисторного оптрона U1.1 и резистора R7. Напряжение от средней точки делителя поступает на не инвертирующий вход первого усилителя сигнала ошибки ШИ- контроллера TL494. Так- же от резистора R7 зависит выходное напряжение ПНа- чем меньше сопротивление, тем меньше выходное напряжение.Настройка ПНа по этой схеме не отличается от той, что на рисунке №1. Единственное отличие- это первоначально нужно выставить 8 вольт на выводе 3 DD1 с помощью подбора резистора R1.

Схема преобразователя напряжения по рисунку ниже отличается упрощенной реализацией узла REM. Такое схемотехническое решение менее надежно, чем в предыдущих вариантах.

Детали

В качестве дросселя L1 можно использовать Советские дроссели ДМ. L2- самодельный. Его можно намотать на ферритовом стержне диаметром 12…15мм. Феррит можно отломить от строчного трансформатора ТВС, сточив его на карбороне до требуемого диаметра. Это долго, но эффективно. Наматывается проводом ПЭВ-2 диаметром 2 мм и содержит 12 витков.

В качестве ДГС можно применить желтое кольцо от компьютерного блока питания.

Провод можно взять ПЭВ-2 диаметром 1 мм. Нужно мотать одновременно двумя проводами, разместив их равномерно по всему кольцу виток к витку. Подключить соответственно со схемой (начала указаны точками).
Трансформатор. Это самая ответственная деталь ПНа, от его изготовления зависит успех всего предприятия. В качестве феррита желательно использовать 2500НМС1 и 2500НМС2. Они имеют отрицательную температурную зависимость и предназначены для использования в сильных магнитных полях. В крайнем случае можно применить кольца М2000НМ-1. Результат будет не много хуже. Кольца нужно брать старые, то есть те, которые были изготовлены до 90-х годов. Да и то, одна партия может сильно отличаться от другой. Так, что ПН, трансформатор которого намотан на одном кольце может показать прекрасные результаты, а ПН, трансформатор которого намотан тем же проводом, на таком же по габаритам и маркировке кольце, но из другой партии, может показать отвратительный результат. Тут как попадешь. Для этого в интернете есть статья «Калькулятор Лысого». С помощью него можно подобрать кольца, частоту ЗГ и количество витков первички.

Если применяется ферритовое кольцо 2000НМ-1 40/25/11, то первичная обмотка должна содержать 2*6 витков. Если кольцо 45/28/12, то соответственно 2*4 витка. Количество витков зависит от частоты задающего генератора. Сейчас есть много программ, которые по введенным данным мгновенно рассчитают все необходимые параметры.

Я использую кольца 45/28/12. В качестве первички применяю провод ПЭВ-2 диаметром 1 мм. Обмотка содержит 2*5 витков, каждая полуобмотка состоит из 8 проводов, то есть наматывается «шина» из 16 проводов, о чем будет сказано ниже (раньше мотал 2*4 витка, но с некоторыми ферритами приходилось поднимать частоту- кстати это можно сделать путем уменьшения резистора R14). Но сперва остановимся на кольце.
Изначально ферритовое кольцо имеет острые края. Их нужно сточить (закруглить) крупным наждаком или напильником- кому как удобнее. Далее обматываем кольцо малярным белым бумажным скотчем в два слоя. Для этого отматываем кусок скотча длиной сантиметров 40, приклеиваем его на ровную поверхность и по линейке нарезаем лезвием полоски шириной 10…15 мм. Вот этими полосками мы и будем его изолировать. В идеале, конечно, лучше кольцо ничем не обматывать, а уложить обмотки непосредственно на феррит. Это благоприятно скажется на температурном режиме трансформатора. Но как говорится, береженого Бог бережет, по этому и изолируем.

На полученной «заготовке» мотаем первичную обмотку. Некоторые радиолюбители сначала мотают вторичку, а уже потом на нее первичку. Я так не пробовал и по этому ничего положительного или отрицательного сказать не могу. Для этого на кольцо наматываем обычную нитку, равномерно разместив расчетное количество витков по всему сердечнику. Концы фиксируем клеем или же маленькими кусочками малярного скотча. Теперь берем один кусок нашего эмалированного провода и наматываем его по этой нитке. Далее берем второй кусок и равномерно мотаем его рядом с первым проводом. Так поступаем со всеми проводами первичной обмотки. В итоге должен получиться ровный шлейф. После намотки вызваниваем все эти провода и делим на 2 части- одна из них будет одной полуобмоткой, а другая- второй. Начало одной соединяем с концом другой. Это будет средний вывод трансформатора. Теперь мотаем вторичку. Бывает так, что вторичная обмотка в связи с относительно большим количеством витков не может уместиться в один слой. На пример нам нужно намотать 21 виток. Тогда поступаем следующим образом: в первый слой мы разместим 11 витков, а во второй- 10. Мотать мы будем уже не по одному проводу, как было в случае с первичкой, а сразу «шиной». Провода нужно стараться укладывать так, чтобы они плотно прилегали и не было разного рода петель и «барашков». После намотки также вызваниваем полуобмотки и соединяем начало одной с концом другой. В заключении окунаем готовый трансформатор в лак, сушим, окунаем, сушим и так несколько раз. Как писалось выше, от качества изготовления трансформатора зависит очень многое.

Программа расчета импульсных трансформаторов (Автор ): ExcellentIT. Я этой программой не пользовался, но многие отзываются о ней хорошо.

Почти каждый человек, который делает автомобильный усилитель с ПНом, расчитывает платы под строго определенные размеры. Чтобы облегчить ему задачу, привожу печатные платы задающих генераторов в формате

Привожу некоторые фотки ПНов, которые сделаны по этим схемам:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Узел управления
ШИМ контроллер

TL494

1 В блокнот
DD1

TL431

1 В блокнот
VDS1 Диодный мост 1 В блокнот
VD3 Стабилитрон 1 В блокнот
С1 Конденсатор 100 нФ 1 В блокнот
С2 4.7 мкФ 1 В блокнот
С3 Конденсатор 1000 пФ 1 В блокнот
С4, С9 Конденсатор 2200 пФ 2 В блокнот
С5, С6 Конденсатор 220 нФ 2 В блокнот
С7, С8 Электролитический конденсатор 4700 мкФ 1 В блокнот
R1, R13 Резистор

2.2 кОм

2 В блокнот
R2, R3, R9, R11 Резистор

10 кОм

4 В блокнот
R4 Резистор

33 кОм

1 В блокнот
R5 Резистор

4.7 кОм

1 В блокнот
R6, R7 Резистор

2 кОм

2 В блокнот
R8 Резистор

15 кОм

1 В блокнот
R10 Резистор

3 кОм

1 В блокнот
R12 Резистор

33 кОм

1 подбор В блокнот
R14 Резистор

10 Ом

1 В блокнот
U1 Оптопара 1 В блокнот
T1 Трансформатор 1 В блокнот
L1 Катушка индуктивности 1 В блокнот
DD2 ИС источника опорного напряжения

TL431

1 В блокнот
DD3 ШИМ контроллер

TL494

1 В блокнот
VT1, VT4 Биполярный транзистор

КТ639А

2 В блокнот
VT2, VT3 Биполярный транзистор

КТ961А

2 В блокнот
VT5-VT8 MOSFET-транзистор

IRFZ44N

4 В блокнот
VT9 Биполярный транзистор

2SA733

1 В блокнот
VT10, VT12 Биполярный транзистор

2SC945

2 В блокнот
VT11 Биполярный транзистор

КТ814А

1 В блокнот
VD1-VD4 Диод 4 В блокнот
VD2 Выпрямительный диод

1N4001

1 В блокнот
VD5 Выпрямительный диод

1N4148

1 В блокнот
VD6 Диод 1 В блокнот
С1, С25 Конденсатор 2200 пФ 2 В блокнот
С2, С21, С23, С24 Конденсатор 0.1 мкФ 4 В блокнот
С3 Электролитический конденсатор 4.7 мкФ 1 В блокнот
С5 Конденсатор 1000 пФ 1 В блокнот
С6, С7 Электролитический конденсатор 47 мкФ 2 В блокнот
С8 Конденсатор 0.68 мкФ 1 В блокнот
С9 Конденсатор 0.33 мкФ 1 В блокнот
С10, С17, С18 Конденсатор 0.22 мкФ 3 В блокнот
С11, С19, С20 Электролитический конденсатор 4700 мкФ 3 В блокнот
С12, С13 Конденсатор 0.01 мкФ 2 В блокнот
С14, С15 Электролитический конденсатор 2200 мкФ 2 В блокнот
С16 Электролитический конденсатор 470 мкФ 1 В блокнот
С22 Электролитический конденсатор 10 мкФ 25 В 1 В блокнот
R3 Резистор

33 кОм

1 подбор В блокнот
R4 Резистор

2.2 кОм

1 В блокнот
R5, R9, R15, R30, R31, R36, R39 Резистор

10 кОм

7 В блокнот
R6 Резистор

3 кОм

1 В блокнот
R7 Резистор

2.2 кОм

1 В блокнот
R8 Резистор

1 кОм

1 В блокнот
R10 Резистор

33 кОм

1 В блокнот
R12, R28 Резистор

4.7 кОм

2 В блокнот
R13, R16 Резистор

2 кОм

2 В блокнот
R14 Резистор

15 кОм

1 В блокнот
R18, R19 Резистор

100 Ом

2 В блокнот
R20, R21 Резистор

470 Ом

2 В блокнот
R22-R25 Резистор

51 Ом

4 В блокнот
R26, R27 Резистор

24 Ом

2 1 Вт В блокнот
R29, R32-R34 Резистор

5.1 кОм

4 В блокнот
R35 Резистор

3.3 кОм

1 В блокнот
R37 Резистор

10 Ом

1 2 Вт В блокнот
R38 Резистор

680 Ом

1 В блокнот
U1 Оптопара

PC817

1 В блокнот
HL1 Светодиод 1 В блокнот
L1 Катушка индуктивности 20 мкГн 1 В блокнот
L2 Катушка индуктивности 10 мкГн 1 В блокнот
L3 Катушка индуктивности 1 В блокнот
T1 Трансформатор 1 В блокнот
FU1 Предохранитель 1 В блокнот
Второй вариант построения стабилизации
DD1, DD2 ИС источника опорного напряжения

TL431

2 В блокнот
DD3 ШИМ контроллер

TL494

1 В блокнот
Конденсатор 220 нФ 1 В блокнот
VT1, VT4 Биполярный транзистор

КТ639А

2 В блокнот
VT2, VT3 Биполярный транзистор

КТ961А

2 В блокнот
VT5-VT8 MOSFET-транзистор

IRFZ44N

4 В блокнот
VT9 Биполярный транзистор

2SA733

1 В блокнот
VT10, VT12 Биполярный транзистор

2SC945

2 В блокнот
VT11 Биполярный транзистор

КТ814А

1 В блокнот
VD1-VD4 Диод 4 В блокнот
VD2 Выпрямительный диод

1N4001

1 В блокнот
VD5 Выпрямительный диод

1N4148

1 В блокнот
VD6 Диод 1 В блокнот
C1, C25 Конденсатор 2200 пФ 2 В блокнот
C2, C4, C12, C13 Конденсатор 0.01 мкФ 4 В блокнот
C3, C8 Конденсатор 0.68 мкФ 2 В блокнот
C5 Конденсатор 1000 пФ 1 В блокнот
C6, C7 Электролитический конденсатор 47 мкФ 2 В блокнот
C9 Конденсатор 0.33 мкФ 1 В блокнот
C10, C17, C18 Конденсатор 0.22 мкФ 3 В блокнот
C11, C19, C20 Электролитический конденсатор 4700 мкФ 3 В блокнот
C14, C15 Электролитический конденсатор 2200 мкФ 2 В блокнот
C16 Электролитический конденсатор 470 мкФ 1 В блокнот
C21, C23, C24 Конденсатор 0.1 мкФ 3 В блокнот
C22 Электролитический конденсатор 10 мкФ 25 В 1 В блокнот
R1 Резистор

6.2 кОм

1 подбор В блокнот
R2 Резистор

2.7 кОм

1 В блокнот
R3 Резистор

33 кОм

2 подбор В блокнот
R4 Резистор

2.2 кОм

1 В блокнот
R5, R30, R31, R36, R39 Резистор

10 кОм

5 В блокнот
R6 Резистор

3 кОм

1 В блокнот
R7 Резистор

690 кОм

1 В блокнот
R8 Резистор

1 кОм

1 В блокнот
R9 Резистор

1 МОм

1 В блокнот
R10 Резистор

33 кОм

1 В блокнот
R12, R14 Резистор

15 кОм

2 В блокнот
R13, R16 Резистор

2 кОм

2 В блокнот
R15, R28 Резистор

4.7 кОм

2 В блокнот
R17 Резистор

1.3 кОм

1 В блокнот
R18, R19 Резистор

100 Ом

2 В блокнот
R20, R21 Резистор

470 Ом

2 В блокнот
R22-R25 Резистор

51 Ом

4 В блокнот
R26, R27 Резистор

24 Ом

2 1 Вт В блокнот
R29, R32-R34 Резистор

5.1 кОм

4 В блокнот
R35 Резистор

3.3 кОм

1 В блокнот
R37 Резистор

10 Ом

1 2Вт В блокнот
R38 Резистор

680 Ом

1 В блокнот
U1 Оптопара

PC817

1 В блокнот
HL1 Светодиод 1 В блокнот
L1 Катушка индуктивности 20 мкГн 1 В блокнот
L2 Катушка индуктивности 10 мкГн 1 В блокнот
L3 Катушка индуктивности 1 В блокнот
T1 Трансформатор 1 В блокнот
FU1 Предохранитель 1 В блокнот
DD1, DD2 ИС источника опорного напряжения

TL431

2 В блокнот
DD3 ШИМ контроллер

TL494

1