Динамика вращательного движения твердого тела (2) - Лекция. Вращательное движение тела

4.6 Вращательное движение твердого тела. Момент силы.

Конечно, положение одной, даже «особой», точки далеко не полностью описывает движение всей рассматриваемой системы тел, но все-таки, лучше знать положение хотя бы одной точки, чем не знать ничего. Тем не менее, рассмотрим применение законов Ньютона к описанию вращения твердого тела вокруг фиксированной оси .

Начнем с простейшего случая: пусть материальная точка массы m прикреплена с помощью невесомого жесткого стержня длиной r к неподвижной оси OO’ (рис. 46). Материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения.

Безусловно, движение точки подчиняется уравнению второго закона Ньютона \(~m \vec a = \vec F_0\). Однако, непосредственное применение этого уравнения не оправдано: во-первых, точка обладает одной степенью свободы, поэтому в качестве единственной координаты удобно использовать угол поворота, а не две декартовые координаты; во-вторых, на рассматриваемую систему действуют силы реакции в оси вращения, а непосредственно на материальную точку – сила натяжения стержня. Нахождение этих сил представляет собой отдельную проблему, решение которой излишне для описания вращения. Поэтому имеет смысл получить на основании законов Ньютона специальное уравнение, непосредственно описывающее вращательное движение.

Пусть в некоторый момент времени на материальную точку действует некоторая сила \(~\vec F\), лежащая в плоскости перпендикулярной оси вращения (рис. 47). При кинематическом описании криволинейного движения вектор полного ускорения \(~\vec a\) удобно разложить на две составляющих: нормальную \(~\vec a_n\), направленную к оси вращения, и тангенциальную \(~\vec a_{\tau}\) , направленную параллельно вектору скорости. Значение нормального ускорения для определения закона движения нам не нужно. Конечно, это ускорение также обусловлено действующими силами, одна из которых неизвестная сила натяжения стержня.

Запишем уравнение второго закона в проекции на тангенциальное направление:

\(~m a_{\tau} = F_{\tau}\) , (1)

заметим, что сила реакции стержня не входит в это уравнение, так как она направлена вдоль стержня и перпендикулярна выбранной проекции. Изменение угла поворота φ непосредственно определяется угловой скоростью \(~\omega = \frac{\Delta \varphi}{\Delta t}\) , изменение которой в свою очередь описывается угловым ускорением \(~\varepsilon = \frac{\Delta \omega}{\Delta t}\) . Угловое ускорение связано с тангенциальной составляющей ускорения соотношением a τ = . Если подставить это выражение в уравнение (9), то получим уравнение, пригодное для определения углового ускорения. Удобно ввести новую физическую величину, определяющую взаимодействие тел при их повороте. Для этого умножим обе части уравнения (1) на r

\(~m r^2 \varepsilon = F_{\tau} r\) . (2)

и рассмотрим выражение в его правой части F τ r , имеющего смысл произведения тангенциальной составляющей силы, на расстояние от оси вращения до точки приложения силы. Это же произведение можно представить несколько иной форме (см. рис. 48)

M = F τ r = Fr cos α = Fd , здесь d - расстояние от оси вращения до линии действия силы, которое также называют плечом силы . Эта физическая величина, произведение модуля силы на расстояние от линии действия силы до оси вращения (плечо силы) M = Fd называется моментом силы . Действие силы может приводить к вращению, как по часовой стрелке, так и против часовой стрелки. В соответствии с выбранным положительным направлением вращения следует определять и знак момента силы. Заметьте, что момент силы определяется той составляющей силы, которая перпендикулярна радиус-вектору точки приложения. Составляющая вектора силы, направленная вдоль отрезка, соединяющего точку приложения и ось вращения, не приводит к раскручиванию тела. Эта составляющая при закрепленной оси компенсируется силой реакции в оси, поэтому она не влияет на вращение тела.

Запишем еще одно полезное выражения для момента силы. Пусть сила \(~\vec F\) приложена к точке А , декартовые координаты которой равны x ,y (рис. 49). Разложим силу \(~\vec F\) на две составляющие \(~\vec F_x, \vec F_y\) , параллельные соответствующим осям координат. Момент силы \(~\vec F\) относительно оси, проходящей через начало координат, очевидно равен сумме моментов составляющих \(~\vec F_x, \vec F_y\) , то есть M = xF y - yF x .

Аналогично, тому, как нами было введено понятие вектора угловой скорости, можно определить также и понятие вектора момента силы. Модуль этого вектора соответствует данному выше определению, направлен же он перпендикулярно плоскости, содержащей вектор силы и отрезок, соединяющий точку приложения силы с осью вращения. Вектор момента силы также может быть определен как векторное произведение радиус-вектора точки приложения силы на вектор силы

\(~\vec M = \vec r \times \vec F\) .

Заметим, что при смещении точки приложения силы вдоль линии ее действия момент силы не изменяется.

Обозначим произведение массы материальной точки на квадрат расстояния до оси вращения mr 2 = I (эта величина называется моментом инерции материальной точки относительно оси ). С использованием этих обозначений уравнение (2) приобретает вид, формально совпадающий с уравнением второго закона Ньютона для поступательного движения

\(~I \varepsilon = M\) . (3)

Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в поступательном движении, именно он определяет изменение угловой скорости. Оказывается, (и это подтверждает наш повседневный опыт) влияние силы на скорость вращения определяет не только величина силы, но и точка его приложения. Момент инерции определяет инерционные свойства тела по отношению к вращению (говоря простым языком – показывает, легко ли раскрутить тело) - чем дальше от оси вращения находится материальная точка, тем труднее привести ее во вращение.

Уравнение (3) допускает обобщение на случай вращения произвольного тела. При вращении тела вокруг фиксированной оси угловые ускорения всех точек тела одинаковы. Поэтому, аналогично тому, как мы проделали при выводе уравнения Ньютона для поступательного движения тела, можно записать уравнения (3) для всех точек вращающегося тела и затем их просуммировать. В результате мы получим уравнение, внешне совпадающее с (3), в котором I - момент инерции всего тела, равный сумме моментов составляющих его материальных точек, M - сумма моментов внешних сил, действующих на тело.

Покажем, каким образом вычисляется момент инерции тела. Важно подчеркнуть, момент инерции тела зависит не только от массы, формы и размеров тела, но и от положения и ориентации оси вращения. Формально процедура расчета сводится к разбиению тела на малые части, которые можно считать материальными точками (рис. 51), и суммированию моментов инерций этих материальных точек, которые равны произведению массы на квадрат расстояния до оси вращения

\(~I = m_1 r^2_1 + m_2 r^2_2 + m_3 r^2_3 + \ldots\) .

Для тел простой формы такие суммы давно подсчитаны, поэтому часто достаточно вспомнить (или найти в справочнике) соответствующую формулу для нужного момента инерции. В качестве примера: момент инерции кругового однородного цилиндра массы m и радиуса R для оси вращения совпадающей с осью цилиндра равен \(~I = \frac{1}{2} m R^2\) .

Момент силыF , действующей на тело, относительно оси вращения

,

где
- проекция силы F на плоскость, перпендикулярную оси вращения; l - плечо силы F (кратчайшее расстояние от оси вращения до линии действия силы).

Момент инерции относительно оси вращения:

а) материальной точки

J = mr 2 ,

где т - масса точки; r - расстояние ее от оси вращения;

б) дискретного твердого тела

где
- масса i-го элемента тела; r i - расстояние этого элемента от оси вращения; п - число элементов тела;

в) сплошного твердого тела

Если тело однородно, т. е. его плотность одинакова по всему объему, то

dm = dV и

где V - объем тела.

Моменты инерции некоторых тел правильной геометрической формы:

Ось, относительно которой определяется момент инерции

Формула момента инерции

Однородный тонкий стержень массой т и длиной l

Тонкое кольцо, обруч, труба радиусом R и массой т, маховик радиусом R и массой т, распределенной по ободу

Круглый однородный диск (цилиндр) радиусом R и массой т Однородный шар массой т и радиусом R

Проходит через центр тяжести стержня перпендикулярно стержню

Проходит через конец стержня перпендикулярно стержню

Проходит через центр перпендикулярно плоскости основания

Проходит через центр диска перпендикулярно плоскости основания

Проходит через центр шара

1/12ml 2

Теорема Штейнера. Момент инерции тела относительно произвольной оси

J = J 0 + ma 2 ,

где J 0 - момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно заданной оси; а - расстояние между осями; m - масса тела.

Момент импульса вращающегося тела относительно оси

L = J
.

Закон сохранения момента импульса

где L i - момент импульса i-го тела, входящего в состав системы. Закон сохранения момента импульса для двух взаимодействующих тел

где
- моменты инерции и угловые скорости тел до взаимодействия:
- те же величины после взаимодействия.

Закон сохранения момента импульса для одного тела, момент инерции которого меняется,

где
- начальный и конечный моменты инерции;
- начальная и конечная угловые скорости тела.

Основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси

M dt =d(J), где М - момент силы, действующей на тело в течение времени dt ;

J - момент инерции тела;
- угловая скорость; J - момент импульса.

Если момент силы и момент инерции постоянны, то это уравнение записывается в виде

М t =J
.

В случае постоянного момента инерции основное уравнение динамики вращательного движения принимает вид

M =J , где - угловое ускорение.

Работа постоянного момента силы М, действующего на вращающееся тело,

где  - угол поворота тела.

Мгновенная мощность, развиваемая при вращении тела,

N = M
.

Кинетическая энергия вращающегося тела

T =1/2 J .

Кинетическая энергия тела, катящегося по плоскости без скольжения,

T== 1 / 2 mv 2 + l / 2 J ,

где l / 2 mv 2 - кинетическая энергия поступательного движения тела; v - скорость центра инерции тела; l / 2 J ,- кинетическая энергия вращательного движения тела вокруг оси, проходящей через центр инерции.

Работа, совершаемая при вращении тела, и изменение кинетической энергии его связаны соотношением

Динамика вращательного движения твердого тела.

    Момент инерции.

    Момент силы. Основное уравнение динамики вращательного движения.

    Момент импульса.

    Момент инерции.

(Рассмотрим опыт со скатывающимися цилиндрами.)

При рассмотрении вращательного движения необходимо ввести новые физические понятия: момент инерции, момент силы, момент импульса.

Момент инерции является мерой инертности тела при вращательном движении тела вокруг неподвижной оси.

Момент инерции материальной точки относительно неподвижной оси вращения равен произведению её массы на квадрат расстояния до рассматриваемой оси вращения (рис.1):

Зависит только от массы материальной точки и её положения относительно оси вращения и не зависит от наличия самого вращения.

Момент инерции - скалярная и аддитивная величина

Момент инерции тела равен сумме моментов инерции всех его точек

.

В случае непрерывного распределения массы эта сумма сводится к интегралу:

,

где - масса малого объема тела ,  плотность тела, - расстояние от элемента до оси вращения.

Момент инерции является аналогом массы при вращательном движении. Чем больше момент инерции тела, тем труднее изменить угловую скорость вращаемого тела. Момент инерции имеет смысл только при заданном положении оси вращения.

Бессмысленно говорить просто о “моменте инерции”. Он зависит:

1)от положения оси вращения;

2)от распределения массы тела относительно оси вращения, т.е. от формы тела и его размеров.

Экспериментальным доказательством этого является опыт со скатывающимися цилиндрами.

Произведя интегрирование для некоторых однородных тел, можно получить следующие формулы (ось вращения проходит через центр масс тела):

    Момент инерции обруча (толщиной стенок пренебрегаем) или полого цилиндра:


    Момент инерции диска или сплошного цилиндра радиуса R:


где .

    Момент инерции шара


    Момент инерции стержня


Если для тела известен момент инерции относительно оси, проходящей через центр масс, то момент инерции относительно любой оси, параллельной первой, находится по теореме Штейнера : момент инерции тела относительно произвольной оси равен моменту инерции J 0 относительно оси, параллельной данной и проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

где d расстояние от центра масс до оси вращения.

Центр масс - воображаемая точка, положение которой характеризует распределение массы данного тела. Центр масс тела движется так же, как двигалась бы материальная точка той же массы под действием всех внешних сил, действующих на данное тело.

Понятие момента инерции было введено в механику отечественным ученым Л. Эйлером в середине XVIII века и с тех пор широко используется при решении многих задач динамики твердого тела. Значение момента инерции необходимо знать на практике при расчете различных вращающихся узлов и систем (маховиков, турбин, роторов электродвигателей, гироскопов). Момент инерции входит в уравнения движения тела (корабля, самолета, снаряда, и т.п.). Его определяют, когда хотят узнать параметры вращательного движения летательного аппарата вокруг центра масс при действии внешнего возмущения (порыва ветра и т.п.). Для тел переменной массы (ракеты) с течением времени изменяется масса и момент инерции.

2 .Момент силы.

Одна и та же сила может сообщать вращающемуся телу разные угловые ускорения в зависимости от её направления и точки приложения. Для характеристики вращающего действия силы вводят понятие момента силы.

Различают момент силы относительно неподвижной точки и относительно неподвижной оси. Моментом силы относительно точки О (полюса) называется векторная величина, равная векторному произведению радиус-вектора проведенного из точки О в точку приложения силы, на вектор силы:

Поясняющий это определение рис. 3 выполнен в предположении, что точка О и вектор лежат в плоскости чертежа, тогда вектор так же располагается в этой плоскости, а вектор  к ней и направлен от нас (как векторное произведение 2-х векторов; по правилу правого буравчика).

Модуль момента силы численно равен произведению силы на плечо:

где - плечо силы относительно точки О,  - угол между направлениями и, .

Плечо - кратчайшее расстояние от центра вращения до линии действия силы.

Вектор момента силы сонаправлен с поступательным движением правого буравчика, если его рукоятку вращать по направлению вращающего действия силы. Момент силы - аксиальный (свободный) вектор, он направлен вдоль оси вращения, не связан с определенной линией действия, его можно переносить в

пространстве параллельно самому себе.

Моментом силы относительно неподвижной оси Z называется проекция вектора на эту ось (проходящую через точку О).

Если на тело действуют несколько сил, то результирующий момент сил относительно неподвижной оси Z равен алгебраической сумме моментов относительно этой оси всех сил, действующих на тело.

Если сила, приложенная к телу, не лежит в плоскости вращения, её можно разложить на 2 компоненты: лежащую в плоскости вращения и  к ней F n . Как видно из рисунка 4, F n вращения не создает, а приводит только к деформации тела; вращение тела обусловлено только составляющей F  .

Вращающееся тело можно представить как совокупность материальных точек.

Выберем произвольно некоторую точку с массой m i , на которую действует сила, сообщая точке ускорение (рис. 5). Поскольку вращение создает только тангенциальная составляющая, для упрощения вывода направлена перпендикулярно оси вращения.

В этом случае

Согласно второму закону Ньютона: . Умножим обе части равенства на r i ;

,

где - момент силы, действующей на материальную точку,

Момент инерции материальной точки.

Следовательно, .

Для всего тела: ,

т.е. угловое ускорение тела прямо пропорционально моменту действующих на него внешних сил и обратно пропорционально его моменту инерции. Уравнение

(1) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси, или второй закон Ньютона для вращательного движения.

3 . Момент импульса.

При сравнении законов вращательного и поступательного движений усматривается аналогия.

Аналогом импульса является момент импульса. Понятие момента импульса также можно ввести относительно неподвижной точки и относительно неподвижной оси, однако в большинстве случаев его можно определить следующим образом. Если материальная точка вращается вокруг неподвижной оси, то её момент импульса относительно этой оси по модулю равен

где m i - масса материальной точки,

 i - её линейная скорость

r i - расстояние до оси вращения.

Т.к. для вращательного движения

где - момент инерции материальной точки относительно этой оси.

Момент импульса твердого тела относительно неподвижной оси равен сумме моментов импульсов всех его точек относительно этой оси:

где - момент инерции тела.

Т.о., момент импульса твердого тела относительно неподвижной оси вращения равен произведению его момента инерции относительно этой оси на угловую скорость и сонаправлен с вектором угловой скорости.

Продифференцируем уравнение (2) по времени:

Уравнение (3) - ещё одна форма основного уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента

импульса твердого тела относительно неподвижной оси вращения равна моменту внешних сил относительно той же оси

Это уравнение является одним из важнейших уравнений ракетодинамики. В процессе движения ракеты положение ее центра масс непрерывно изменяется, вследствие чего возникают различные моменты сил: лобового сопротивления, аэродинамической силы, сил создаваемых рулем высоты. Уравнение вращательного движения ракеты под действием всех приложенных к ней моментов сил совместно с уравнениями движения центра масс ракеты и уравнениями кинематики с известными начальными условиями позволяют определить положение ракеты в пространстве в любой момент времени.

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.

Шаги

Использование силы и плеча момента

  1. Определите силы, действующие на тело и соответствующие им моменты. Если сила не перпендикулярна рассматриваемому плечу момента (т.е. она действует под углом), то вам может понадобиться найти ее составляющие с использованием тригонометрических функций, таких как синус или косинус.

    • Рассматриваемая составляющая силы будет зависеть от эквивалента перпендикулярной силы.
    • Представьте себе горизонтальный стержень, к которому нужно приложить силу 10 Н под углом 30° над горизонтальной плоскостью, чтобы вращать его вокруг центра.
    • Поскольку вам нужно использовать силу, не перпендикулярную плечу момента, то для вращения стержня вам необходима вертикальная составляющая силы.
    • Следовательно, нужно рассматривать y-составляющую, или использовать F = 10sin30° Н.
  2. Воспользуйтесь уравнением момента, τ = Fr, и просто замените переменные заданными или полученными данными.

    • Простой пример: Представьте себе ребенка массой 30 кг, сидящего на одном конце качели-доски. Длина одной стороны качели составляет 1,5 м.
    • Поскольку ось вращения качели находится в центре, вам не нужно умножать длину.
    • Вам необходимо определить силу, прилагаемую ребенком, с помощью массы и ускорения.
    • Поскольку дана масса, вам нужно умножить ее на ускорение свободного падения, g, равное 9,81 м/с 2 . Следовательно:
    • Теперь у вас есть все необходимые данные для использования уравнения момента:
  3. Воспользуйтесь знаками (плюс или минус), чтобы показать направление момента. Если сила вращает тело по часовой стрелке, то момент отрицательный. Если же сила вращает тело против часовой стрелки, то момент положительный.

    • В случае нескольких приложенных сил, просто сложите все моменты в теле.
    • Поскольку каждая сила стремится вызвать различные направления вращения, важно использовать знак поворота для того, чтобы следить за направлением действия каждой силы.
    • Например, к ободу колеса, имеющего диаметр 0,050 м, были приложены две силы, F 1 = 10,0 Н, направленная по часовой стрелке, и F 2 = 9,0 Н, направленная против часовой стрелки.
    • Поскольку данное тело – круг, фиксированная ось является его центром. Вам нужно разделить диаметр и получить радиус. Размер радиуса будет служить плечом момента. Следовательно, радиус равен 0,025 м.
    • Для ясности мы можем решить отдельные уравнения для каждого из моментов, возникающих от соответствующей силы.
    • Для силы 1 действие направлено по часовой стрелке, следовательно, создаваемый ею момент отрицательный:
    • Для силы 2 действие направлено против часовой стрелки, следовательно, создаваемый ею момент положительный:
    • Теперь мы можем сложить все моменты, чтобы получить результирующий вращательный момент:

    Использование момента инерции и углового ускорения

    1. Чтобы начать решать задачу, разберитесь в том, как действует момент инерции тела. Момент инерции тела – это сопротивление тела вращательному движению. Момент инерции зависит как от массы, так и от характера ее распределения.

      • Чтобы четко понимать это, представьте себе два цилиндра одинакового диаметра, но разной массы.
      • Представьте себе, что вам нужно повернуть оба цилиндра вокруг их центральной оси.
      • Очевидно, что цилиндр с большей массой будет сложнее повернуть, чем другой цилиндр, поскольку он “тяжелее”.
      • А теперь представьте себе два цилиндра различных диаметров, но одинаковой массы. Чтобы выглядеть цилиндрическими и иметь разную массу, но в то же время иметь разные диаметры, форма, или распределение массы обоих цилиндров должна отличаться.
      • Цилиндр с большим диаметром будет выглядеть как плоская закругленная пластина, тогда как меньший цилиндр будет выглядеть как цельная трубка из ткани.
      • Цилиндр с большим диаметром будет сложнее вращать, поскольку вам нужно приложить большую силу, чтобы преодолеть более длинное плечо момента.
    2. Выберите уравнение, которое вы будете использовать для расчета момента инерции. Есть несколько уравнений, которые можно использовать для этого.

      • Первое уравнение – самое простое: суммирование масс и плечей моментов всех частиц.
      • Это уравнение используется для материальных точек, или частиц. Идеальная частица – это тело, имеющее массу, но не занимающее пространства.
      • Другими словами, единственной значимой характеристикой этого тела является масса; вам не нужно знать его размер, форму или строение.
      • Идея материальной частицы широко используется в физике с целью упрощения расчетов и использования идеальных и теоретических схем.
      • Теперь представьте себе объект вроде полого цилиндра или сплошной равномерной сферы. Эти предметы имеют четкую и определенную форму, размер и строение.
      • Следовательно, вы не можете рассматривать их как материальную точку.
      • К счастью, можно использовать формулы, применимые к некоторым распространенным объектам:
    3. Найдите момент инерции. Чтобы начать рассчитывать вращательный момент, нужно найти момент инерции. Воспользуйтесь следующим примером как руководством:

      • Два небольших “груза” массой 5,0 кг и 7,0 кг установлены на расстоянии 4,0 м друг от друга на легком стержне (массой которого можно пренебречь). Ось вращения находится в середине стержня. Стержень раскручивается из состояния покоя до угловой скорости 30,0 рад/с за 3,00 с. Рассчитайте производимый вращательный момент.
      • Поскольку ось вращения находится в середине стержня, то плечо момента обоих грузов равно половине его длины, т.е. 2,0 м.
      • Поскольку форма, размер и строение “грузов” не оговаривается, мы можем предположить, что грузы являются материальными частицами.
      • Момент инерции можно вычислить следующим образом:
    4. Найдите угловое ускорение, α. Для расчета углового ускорения можно воспользоваться формулой α= at/r.

      • Первая формула, α= at/r, может использоваться в том случае, если дано тангенциальное ускорение и радиус.
      • Тангенциальное ускорение – это ускорение, направленное по касательной к направлению движения.
      • Представьте себе объект, двигающийся по криволинейному пути. Тангенциальное ускорение – это попросту его линейное ускорение на любой из точек всего пути.
      • В случае второй формулы, легче всего проиллюстрировать ее, связав с понятиями из кинематики: смещением, линейной скоростью и линейным ускорением.
      • Смещение – это расстояние, пройденное объектом (единица СИ – метры, м); линейная скорость – это показатель изменения смещения за единицу времени (единица СИ – м/с); линейное ускорение – это показатель изменения линейной скорости за единицу времени (единица СИ – м/с 2).
      • Теперь давайте рассмотрим аналоги этих величин при вращательном движении: угловое смещение, θ – угол поворота определенной точки или отрезка (единица СИ – рад); угловая скорость, ω – изменение углового смещения за единицу времени (единица СИ – рад/с); и угловое ускорение, α – изменение угловой скорости за единицу времени (единица СИ – рад/с 2).
      • Возвращаясь к нашему примеру – нам были даны данные для углового момента и время. Поскольку вращение начиналось из состояния покоя, то начальная угловая скорость равна 0. Мы можем воспользоваться уравнением, чтобы найти:
    5. Воспользуйтесь уравнением, τ = Iα, чтобы найти вращательный момент. Просто замените переменные ответами, полученными на предыдущих шагах.

      • Вы можете заметить, что единица "рад" не подходит к нашим единицам измерения, поскольку считается безразмерной величиной.
      • Это значит, что вы можете пренебречь ею и продолжить ваши расчеты.
      • Для анализа единиц измерения мы можем выразить угловое ускорение в с -2 .
    • В первом методе, если тело является кругом и ось его вращения находится в центре, то рассчитывать составляющие силы не нужно (при условии, что сила не приложена под наклоном), поскольку сила лежит на касательной к окружности, т.е. перпендикулярно плечу момента.
    • Если вам сложно представить, как происходит вращение, то возьмите ручку и попробуйте воссоздать задачу. Для более точного воспроизведения не забудьте скопировать положение оси вращения и направление приложенной силы.