Формулы корней. Свойства корней

Корнем n степени из числа называют такое число, которое при возведении в эту степень даст то число, из которого извлекается корень. Чаще всего, действия производятся с корнями квадратными, которые соответствуют 2 степени. При извлечении корня часто невозможно найти его явно, а результатом является число, которое невозможно представить в виде натуральной дроби (трансцендентное). Но используя некоторые приемы, можно значительно упростить решение примеров с корнями.

Вам понадобится

  • - понятие корня из числа;
  • - действия со степенями;
  • - формулы сокращенного умножения;
  • - калькулятор.

Инструкция

  • Если не требуется абсолютная точность, при решении примеров с корнями воспользуйтесь калькулятором. Чтобы извлечь из числа квадратный корень, наберите его на клавиатуре, и просто нажмите соответствующую кнопку, на которой изображен знак корня. Как правило, на калькуляторах берется корень квадратный. Но для вычисления корней высших степеней, воспользуйтесь функцией возведения числа в степень (на инженерном калькуляторе).
  • Для извлечения квадратного корня возведите число в степень 1/2, кубического корня в 1/3 и так далее. При этом обязательно учитывайте, что при извлечении корней четных степеней, число должно быть положительным, иначе калькулятор просто не выдаст ответ. Это связанно с тем, что при возведении в четную степень любое число будет положительным, например, (-2)^4=(-2)∙ (-2)∙ (-2)∙ (-2)=16. Для извлечения квадратного корня нацело, когда это возможно, воспользуйтесь таблицей квадратов натуральных чисел.
  • Если же рядом нет калькулятора, или требуется абсолютная точность в расчетах, используйте свойства корней, а также различные формулы для упрощения выражений. Из многих чисел можно извлечь корень частично. Для этого воспользуйтесь свойством, что корень из произведения двух чисел равен произведению корней из этих чисел √m∙n=√m∙√n.
  • Пример. Вычислите значение выражения (√80-√45)/ √5. Прямое вычисление ничего не даст, поскольку нацело не извлекается ни один корень. Преобразуйте выражение (√16∙5-√9∙5)/ √5=(√16∙√5-√9∙√5)/ √5=√5∙(√16-√9)/ √5. Произведите сокращение числителя и знаменателя на √5, получите (√16-√9)=4-3=1.
  • Если подкоренное выражение или сам корень возведены в степень, то при извлечении корня воспользуйтесь тем свойством, что показатель степени подкоренного выражения можно поделить на степень корня. Если деление производится нацело, число вносится из-под корня. Например, √5^4=5²=25. Пример. Вычислить значение выражения (√3+√5)∙(√3-√5). Примените формулу разности квадратов и получите (√3)²-(√5)²=3-5=-2.

Подкоренное выражение – это алгебраическое выражение, которое находится под знаком корня (квадратного, кубического или более высокого порядка). Иногда значения разных выражений могут быть одинаковыми, например, 1/(√2 - 1) = √2 + 1. Упрощение подкоренного выражения призвано привести его к некоторой канонической форме записи. Если два выражения, которые записаны в канонической форме, по-прежнему различны, их значения не равны. В математике считается, что каноническая форма записи подкоренных выражений (а также выражений с корнями) соответствует следующим правилам:

  • Если можно, избавьтесь от дроби под знаком корня
  • Избавьтесь от выражения с дробным показателем
  • Если можно, избавьтесь от корней в знаменателе
  • Избавьтесь от операции умножения корня на корень
  • Под знаком корня нужно оставить только те члены, из которых нельзя извлечь целочисленный корень

Эти правила можно применить к выполнению тестовых заданий. Например, если вы решили задачу, но результат не совпадает ни с одним из приведенных ответов, запишите результат в канонической форме. Имейте в виду, что ответы к тестовым заданиям даются в канонической форме, поэтому если записать результат в той же форме, вы с легкостью определите правильный ответ. Если в задаче требуется «упростить ответ» или «упростить подкоренные выражения», необходимо записать результат в канонической форме. Более того, каноническая форма упрощает решение уравнений, хотя с некоторыми уравнениями легче справиться, если на время забыть о канонической форме записи.

Шаги

Избавление от полных квадратов и полных кубов

Избавление от выражения с дробным показателем

Преобразуйте выражение с дробным показателем в подкоренное выражение. Или, если нужно, преобразуйте подкоренное выражение в выражение с дробным показателем, но никогда не смешивайте такие выражения в одном уравнении, например, так: √5 + 5^(3/2). Допустим, вы решили работать с корнями; квадратный корень из n будем обозначать как √n, а кубический корень из n как куб√n.

Избавление от дробей под знаком корня

Согласно канонической форме записи корень из дроби нужно представить в виде деления корней из целых чисел.

    Посмотрите на подкоренное выражение. Если оно представляет собой дробь, перейдите к следующему шагу.

    Замените корень из дроби отношением двух корней согласно следующему тождеству: √(a/b) = √a/√b.

    • Не пользуйтесь этим тождеством, если знаменатель отрицательный или включает переменную, которая может быть отрицательной. В этом случае сначала упростите дробь.
  1. Упростите полные квадраты (если они есть). Например, √(5/4) = √5/√4 = (√5)/2.

Избавление от операции умножения корней

Избавление от множителей, которые являются полными квадратами

    Разложите подкоренное число на множители. Множители – это некоторые числа, при перемножении которых получается исходное число. Например, 5 и 4 являются двумя множителями числа 20. Если из подкоренного числа нельзя извлечь целочисленный корень, разложите такое число на возможные множители и найдите среди них полный квадрат.

    • Например, запишите все множители числа 45: 1, 3, 5, 9, 15, 45. 9 является множителем 45 (9 х 5 = 45) и полным квадратом (9 = 3^2).
  1. Вынесите за знак корня множитель, который является полным квадратом. 9 представляет собой полный квадрат, потому что 3 х 3 = 9. Избавьтесь от 9 под знаком корня и запишите 3 перед знаком корня; под знаком корня останется 5. Если вы внесете число 3 под знак корня, оно будет умножено на себя и на число 5, то есть 3 х 3 х 5 = 9 х 5 = 45. Таким образом, 3√ 5 – это упрощенная форма записи √45.

    • √45 = √(9 * 5) = √9 * √5 = 3√5.
  2. Найдите полный квадрат в подкоренном выражении с переменной. Запомните: √(a^2) = |а|. Такое выражение можно упростить до «а», но только если переменная принимает положительные значения. √(a^3) можно разложить на √а * √(а^2), потому что при перемножении одинаковых переменных их показатели складываются (а * а^2 = а^3).

    • Таким образом, в выражении а^3 полным квадратом является а^2.
  3. Вынесите за знак корня переменную, которая является полным квадратом. Избавьтесь от a^2 под знаком корня и запишите «а» перед знаком корня. Таким образом, √(а^3) = а√а.

    Приведите подобные члены и упростите любые рациональные выражения.

Избавление от корней в знаменателе (рационализация знаменателя)

    Согласно канонической форме знаменатель , если возможно, должен включать только целые числа (или многочлен в случае присутствия переменной).

    • Если знаменатель представляет собой одночлен под знаком корня, например, [числитель]/√5, умножьте числитель и знаменатель на этот корень: ([числитель] * √5)/(√5 * √5) = ([числитель] * √5)/5.
      • В случае кубического корня или корня большей степени умножьте числитель и знаменатель на корень с подкоренным выражением в соответствующей степени, чтобы рационализировать знаменатель. Если, например, в знаменателе находится куб√5, умножьте числитель и знаменатель на куб√(5^2).
    • Если знаменатель является выражением в виде суммы или разности квадратных корней, таких как √2 + √6, умножьте числитель и знаменатель на сопряженное выражение, то есть выражение с обратным знаком между его членами. Например: [числитель]/(√2 + √6) = ([числитель] * (√2 - √6))/((√2 + √6) * (√2 - √6)). Затем с помощью формулы разности квадратов ((а + b)(а - b) = а^2 - b^2) рационализируйте знаменатель: (√2 + √6)(√2 - √6) = (√2)^2 - (√6)^2 = 2 - 6 = -4.
      • Формулу разности квадратов можно также применять к выражению вида 5 + √3, потому что любое целое число является квадратным корнем из другого целого числа. Например: 1/(5 + √3) = (5 - √3)/((5 + √3)(5 - √3)) = (5 - √3)/(5^2 - (√3)^2) = (5 - √3)/(25 - 3) = (5 - √3)/22
      • Этот метод можно применять к сумме квадратных корней, таких как √5 - √6 + √7. Если сгруппировать это выражение в виде (√5 - √6) + √7 и умножить его на (√5 - √6) - √7, вы не избавитесь от корней, а получите выражение вида а + b * √30, где «а» и «b» – одночлены без корня. Затем полученное выражение можно умножить на сопряженное: (а + b * √30)(а - b * √30), чтобы избавиться от корней. То есть если сопряженным выражением можно воспользоваться один раз, чтобы избавиться от некоторого количества корней, то им можно пользоваться сколько угодно раз, чтобы избавиться от всех корней.
      • Этот метод также применим к корням более высоких степеней, например, к выражению «корень 4-й степени из 3 плюс корень 7-й степени из 9». В этом случае умножьте числитель и знаменатель на выражение, сопряженное выражению в знаменателе. Но здесь сопряженное выражение будет немного другим по сравнению с теми, которые описаны выше. Про этот случай можно почитать в учебниках по алгебре.
  1. Упростите числитель после того, как вы избавились от корней в знаменателе. В числителе находится произведение исходного выражения и сопряженного выражения.

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b < 0. .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при а ≥ 0 и b ≥ 0. если же а < 0, то .

В ходе решения некоторых математических задач приходится оперировать с квадратными корнями. Поэтому важно знать правила действий с квадратными корнями и научиться преобразовывать выражения, их содержащие. Цель – изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями.

Мы знаем, что некоторые рациональные числа выражаются бесконечными периодическими десятичными дробями, как, например, число 1/1998=0,000500500500… Но ничто не мешает вообразить и число, в десятичном разложении которого не обнаружится никакого периода. Такие числа называются иррациональными.

История иррациональных чисел восходит к удивительному открытию пифагорейцев еще в VI в. до н. э. А началось все с простого, казалось бы, вопроса: каким числом выражается длина диагонали квадрата со стороной 1?

Диагональ разбивает квадрат на 2 одинаковых прямоугольных треугольника, в каждом из которых она выполняет роль гипотенузы. Поэтому, как следует из теоремы Пифагора, длина диагонали квадрата равна

. Сразу же возникает соблазн достать микрокалькулятор и нажать клавишу извлечения квадратного корня. На табло мы увидим 1,4142135. Более совершенный калькулятор, выполняющий вычисления с высокой точностью покажет 1,414213562373. А с помощью современного мощного компьютера можно вычислить с точностью до сотен, тысяч, миллионов знаков после запятой. Но даже самый высокопроизводительный компьютер, сколько бы долго он ни работал, никогда не сможет ни рассчитать все десятичные цифры, ни обнаружить в них какой-либо период.

И хотя у Пифагора и его учеников компьютера не было, обосновали этот факт именно они. Пифагорейцы доказали, что у диагонали квадрата и его стороны общей меры (т.е. такого отрезка, который целое число раз откладывался бы и на диагонали, и на стороне) не существует. Следовательно, отношение их длин – число

– нельзя выразить отношением некоторых целых чисел m и n. А коль скоро это так, добавим мы, десятичное разложение числа не обнаруживает никакой регулярной закономерности.

По следам открытия пифагорейцев

Как доказать, что число

иррационально? Предположим, существует рациональное число m/n=. Дробь m/n будем считать несократимой, ведь сократимую дробь всегда можно привести к несократимой. Возведя обе части равенства, получим . Отсюда заключаем, что m – число четное, то есть m=2К. Поэтому и, следовательно, , или . Но тогда получим что и n четное число, а этого быть не может, поскольку дробь m/n несократима. Возникает противоречие.

Остается сделать вывод, что наше предположение неверно и рационального числа m/n, равного

не существует.

1. Квадратный корень из числа

Зная время t , можно найти путь при свободном падении по формуле:

Решим обратную задачу.

Задача . Сколько секунд будет падать камень, сброшенный с высоты 122,5 м?

Чтобы найти ответ, нужно решить уравнение

Из него находим, что Теперь осталось найти такое положительное число t, что его квадрат равняется 25. Этим числом является 5, так как Значит, камень будет падать 5 с.

Искать положительное число по его квадрату приходится и при решении других задач, например при отыскании длины стороны квадрата по его площади. Введем следующее определение.

Определение . Неотрицательное число, квадрат которого равен неотрицательному числу а, называется квадратным корнем из а. Это число обозначают

Таким образом

Пример . Так как

Из отрицательных чисел нельзя извлекать квадратные корни, так как квадрат любого числа или положителен, или равен нулю. Например, выражение

не имеет числового значения. знак называют знаком радикала (от латинского «радикс» – корень), а число а – подкоренным числом. Например, в записи подкоренное число равно 25. Так как Это означает, что квадратный корень из числа, записанного единицей и 2n нулями, равен числу, записываемому единицей и n нулями: = 10…0

2n нулей n нулей

Аналогично доказывается, что

2n нулей n нулей

Например,

2. Вычисление квадратных корней

Мы знаем, что не существует рационального числа, квадрат которого равен 2. Это означает, что

не может быть рациональным числом. Он является иррациональным числом, т.е. записывается в виде непериодической бесконечной десятичной дроби, причем первые десятичные знаки этой дроби имеют вид 1,414… Чтобы найти следующий десятичный знак, надо взять число 1.414х , где х может принимать значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, возвести по порядку эти числа в квадрат и найти такое значение х, при котором квадрат меньше, чем 2, но следующий за ним квадрат больше, чем 2. Таким значением является х=2. Далее повторяем то же самое с числами вида 1,4142х . Продолжая этот процесс, получаем одну за другой цифры бесконечной десятичной дроби, равной .

Аналогично доказывается существование квадратного корня из любого положительного действительного числа. Разумеется, последовательное возведение в квадрат весьма трудоемкое занятие, и потому существуют способы быстрее находить десятичные знаки квадратного корня. С помощью микрокалькулятора можно найти значение

с восемью верными цифрами. Для этого достаточно ввести в микрокалькулятор число а>0 и нажать клавишу – на экране высветится 8 цифр значения . В некоторых случаях приходится использовать свойства квадратных корней, которые мы укажем ниже.

Если точность, даваемая микрокалькулятором, недостаточна, можно воспользоваться способом уточнения значения корня, даваемым следующей теоремой.

Теорема. Если а – положительное число и – приближенное значение для по избытку, то

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.